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Abstract

This paper is concerned with the effect of a biasing electric field on the propagation of Lamb waves in a piezoelectric

plate. On the basis of three dimensional linear elastic equations and piezoelectric constitutive relations, the differential

equations of motion under a biasing electric field are obtained and solved. Due to the symmetry of the plate, there are

symmetric and antisymmetric modes with respect to the median plane of the piezoelectric plate. According to the

characteristics of symmetric modes (odd potential state) and antisymmetric modes (even potential state), the phase

velocity equations of symmetric and antisymmetric modes of Lamb wave propagation are obtained for both electrically

open and shorted cases. The effect of a biasing electric field on the phase velocity, electromechanical coupling coefficient,

stress field and mechanical displacement of symmetric and antisymmetric Lamb wave modes are discussed in this paper

and an accompanying paper respectively. It is shown that the biasing electric field has significant effect on the phase

velocity and electromechanical coupling coefficient, the time delay owning to the velocity change is useful for high

voltage measurement and temperature compensation, the increase in the electromechanical coupling coefficient can be

used to improve the efficiency of transduction. � 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Lamb waves are elastic waves that propagate in plates of finite thickness. They have been widely used in
physical, chemical and biological sensors (Wenzel and White, 1988), ultrasonic equipment for measuring
mass density and viscosity of liquids (Wu and Zhu, 1996), flaw detection. Theoretical and the experimental
investigations have demonstrated that there exist a variety of modes in the plate (Worlton, 1961; Toda,
1973; Shick et al., 1990), and the characteristics of each mode are determined by the ratio of plate thickness
to wavelength. The waves can be divided into symmetric and antisymmetric modes, in which the zero-order
symmetric mode (s0) and antisymmetric mode (a0) are the most useful ones (Wu and Zhu, 1996). The a0
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mode is especially sensitive, fast in response, and can be adaptive to operate in liquid media (Joshi and Jin,
1991).
In recent years, there has been a growing interest in studying the effect of external perturbations such as

biasing stresses, strains, pressure, temperature and electric fields on the propagation of acoustic waves. The
main reasons for investigating the external perturbation effects are (Joshi, 1982): (1) to minimize the effect
of certain variables on the propagation of the wave, (2) to utilize the effect to measure particular variable,
e.g., application in SAW pressure sensors, SAW accelerometers, (3) to improve performance or select the
most suitable operating conditions of SAW devices, e.g., selectivity of filters, stability of oscillators and
temperature compensation of devices. The presence of a biasing state induced by external perturbations can
significantly affect the characteristics of BAW and SAW. This fact is widely recognized and tackled by
many investigators. For instance, Kessenikh and Shuvalov (1982) found that the application of a biasing
electric field directed along the six or fourfold axis or a temperature-induced symmetry decrease at the
phase transition can give rise to the existence of the transverse Bleustein–Gulyev surface wave. Sinha (1982)
described the temperature and stress effects on the propagation of elastic waves in anisotropic solids by a
perturbation procedure. Kuznetsova et al. (1998) presented theoretical results for the effects of differently
oriented external electric field on the velocity of Bleustein–Gulyev surface acoustic waves in lithium niobate
and strontium titanate for different mechanical crystal states, and revealed that the BG wave is unstable
towards external effects. Sinha et al. (1985) considered the extensional and flexural deformations due to
externally applied forces which have substantially effects on the change in the time delay, and demonstrated
that such effects are strongly dependent on the type of loading, substrate geometry, orientation and
propagation direction of surface waves. Dowaikh (1999) examined the propagation of Love waves in a pre-
stressed layered half-space for an incompressible elastic material. Hussain and Ogden (2001) illustrated the
influence of pure homogeneous strain on the reflection and transmission of plane waves at the boundary
between two half-space of incompressible isotropic elastic material. Also, the influence of a biasing electric
field on bulk waves, SAWs (Palmieri et al., 1986), Lamb waves (Palma et al., 1985a,b; Joshi, 1996)
are experimentally investigated. Experiments have proved that SAW time-delay can be altered due to
the biasing electric field, and this effect has great importance on improving the efficiency of SAW con-
volvers, the developments of high precision pressure sensors and stable resonate as well as nondestructive
testing of structural material (Sinha, 1982). The use of acoustic wave propagation is particularly attractive
due to the fact that lower voltages are needed to obtain the same electric intensity in comparison with bulk
waves.
The interpretation of these effects can be given by the perturbation theory of small amplitude acoustic

waves superposed on a bias (Tiersten, 1978). Based on this theory, the biasing field modifies the second
order material constants, and the effective material constants which differ from those of the unbiased
medium are described. In fact, when a static voltage is applied across the electrodes deposited on the
surfaces of the plate, various components of mechanical stress and electric displacement are generated in
the piezoelectric plate. These mechanical stresses and electric displacements can lead to a change in the
velocity of the acoustic wave. The sensing principle of all the acoustic voltage sensors are based on the
changes in acoustic wave velocity caused by an electric field. Due to the availability of large number of
propagation modes and the wide choice of interaction conditions, Lamb waves in electric field controlled
devices are especially attractive (Palma et al., 1985a,b). Lamb wave voltage sensors are highly stable, small,
and sensitive to the applied voltage.
This contribution consists of two papers, in which we will present preliminary results of the change in

phase velocity produced by a uniform biasing electric field on different Lamb wave modes propagating in
the infinite piezoelectric plate. In the current paper we will concentrate on the symmetric Lamb waves. All
the results are very useful for improving or varying performance of acoustic devices. Only linear piezo-
electric effects are considered here. Further researches will be invoked to study the more complicated and
important nonlinear piezoelectric effects and electrostriction.
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2. Statement of the problem

2.1. Static electric field problem

The prototype geometry for a discussion of Lamb waves is shown in Fig. 1. The piezoelectric plate is
symmetric about the media plane z ¼ 0 and extends infinitely along x and y directions, and has a thickness
h. The polarization direction of the transversely isotropic piezoelectric plate is along z-axis perpendicular to
the x–y plate. The wave propagates along the positive direction of x-axis with phase velocity c. The biasing
voltage is applied to the upper surface of the plate while the lower surface is grounded. The biasing field is
applied parallel to the thickness direction. When the biasing electric field is applied, the components of
initial stress and initial electric displacement exist in the plate, and hence the phase velocity of Lamb waves
is changed through electroacoustic effects. Initial stresses and initial electric displacements should satisfy the
constitutive equations in the initial reference configuration, i.e.,

r0x ¼ c11S0x þ c12S0y þ c13S0z � e31E0z ð1aÞ

r0y ¼ c12S0x þ c11S0y þ c13S0z � e31E0z ð1bÞ

r0z ¼ c13S0x þ c13S0y þ c33S0z � e33E0z ð1cÞ

D0x ¼ e15S0zx þ e11E0x ð1dÞ

D0y ¼ e15S0yz þ e11E0z ð1eÞ

D0z ¼ e31S0x þ e31S0y þ e33S0z þ e33E0z ð1fÞ

where r0x , r
0
y and r0z are initial stresses, D

0
x , D

0
y and D

0
z are initial electric displacements, S

0
x , S

0
y , S

0
z , S

0
zx and S

0
yz

are initial strains, E0x , E
0
y , E

0
z are initial electric fields, c11, c12, c13 and c33 are elastic constants, e31, e33 and e15

are piezoelectric constants, e11 and e33 are dielectric constants of the transversely isotropic piezoelectric
plate.
We assume that there exists only one constant initial stress component r0x in the plate, and the other

components of the initial stress are zero. For the plain strain problem, S0y ¼ 0. Considering the thin plate,
we have r0z ¼ 0. From the third equation of Eqs. (1a)–(1f) we have

S0z ¼ � c13
c33
S0x þ

e33
c33
E0z

then substitute this equation into Eqs. (1a) and (1f), we obtain

Fig. 1. Infinite piezoelectric plate in a biasing electric field.
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r0x ¼ c11

�
� c

2
13

c33

�
S0x þ

c13e33
c33

�
� e31

�
E0z ð2aÞ

D0z ¼ e31

�
� c13e33

c33

�
S0x þ

e233
c33

�
þ e33

�
E0z ð2bÞ

Because the media is an insulator and no free charge exists, the electric displacements satisfy the
Gaussian equation, and the electric field E0z is related to the initial electrical potential u

0, i.e.,

oD0x
ox

þ
oD0y
oy

þ oD0z
oz

¼ 0 ð3aÞ

E0z ¼ � ou0

oz
ð3bÞ

When the biasing voltage V is applied only along the z direction, we have S0x ¼ 0, D0x ¼ D0y ¼ 0. Considering
these conditions, we can obtain from Eqs. (3a) and (3b) that yields

o2u0

oz2
¼ 0 ð4Þ

The solution of Eq. (4) is u0 ¼ azþ q, where a and q are unknown constants. From the electrical boundary
conditions, it can be stated that

a �
�
� h
2

�
þ q ¼ V ð5aÞ

and

a � h
2

� �
þ q ¼ 0 ð5bÞ

We have

u0 ¼ � V
h
� zþ V

2
ð6Þ

Substitution of (6) into Eq. (3b), yields

E0z ¼ � ou0

oz
¼ V
h

ð7Þ

Substitution of Eq. (7) into Eqs. (2a) and (2b) yields the initial stress and initial displacement produced by
the biasing voltage

r0x ¼
c13e33
c33

�
� e31

�
� V
h

ð8aÞ

D0z ¼
e233
c33

�
þ e33

�
� V
h

ð8bÞ

2.2. Governing equations

The field equations of the piezoelectric body with initial stresses can be expressed as (Wang and Shang,
1997)
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rij;j þ ðui;k � r0kjÞ;j ¼ q � €uui ð9aÞ

Di;i þ ðui;j � D0j Þ;i ¼ 0 ð9bÞ

where i, j, k ¼ 1; 2; 3, q is mass density, ui and Di denote the mechanical displacement and the electric
displacement in the ith direction, respectively, rij is stress tensor. For the plain strain problem, displace-
ments u, v, w and electrical potential u should satisfy

u ¼ uðx; z; tÞ ð10aÞ

v ¼ 0 ð10bÞ

w ¼ wðx; z; tÞ ð10cÞ

u ¼ uðx; z; tÞ ð10dÞ
Substitution of Eqs. (10a)–(10d) into Eqs. (9a) and (9b), we have

orx
ox

þ oszx
oz

þ r0x
o2u
ox2

¼ q
o2u
ot2

ð11aÞ

oszx
ox

þ orz
oz

þ r0x
o2w
ox2

¼ q
o2w
ot2

ð11bÞ

oDx
ox

þ oDz
oz

þ D0z
o2u
oxoz

þ D0z
o2w
oz2

¼ 0 ð11cÞ

From the constitutive equations of the transversely isotropic piezoelectric media,

rx ¼ c11Sx þ c13Sz � e31Ez ð12aÞ

ry ¼ c12Sx þ c13Sz � e33Ez ð12bÞ

rz ¼ c13Sx þ c33Sz � e33Ez ð12cÞ

szx ¼ c44Szx � e15Ex ð12dÞ

Dx ¼ e15Szx þ e11Ex ð12eÞ

Dz ¼ e31Sx þ e33Sz þ e33Ez ð12fÞ
where

Sx ¼
ou
ox

; Sy ¼
ov
oy

; Sz ¼
ow
oz

; Syz ¼
ow
oy

þ ov
oz

; Szx ¼
ou
oz

þ ow
ox

Sxy ¼
ou
oy

þ ov
ox

; Ex ¼ � ou
ox

; Ey ¼ � ou
oy

; Ez ¼ � ou
oz

Substitution of Eqs. (12a)–(12f) and Eqs. (8a) and (8b) into Eqs. (11a)–(11c), we have

c11

�
þ c13e33

c33

�
� e31

�
V
h

�
� o
2u
ox2

þ c44
o2u
oz2

þ ðc13 þ c44Þ
o2w
oxoz

þ ðe31 þ e15Þ
o2u
oxoz

¼ q
o2u
ot2

ð13aÞ

ðc13 þ c44Þ
o2u
oxoz

þ c44

�
þ c13e33

c33

�
� e31

�
V
h

�
� o
2w
ox2

þ c33
o2w
oz2

þ e15
o2u
ox2

þ e33
o2u
oz2

¼ q
o2w
ot2

ð13bÞ
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e15

�
þ e31 þ

e233
c33

�
þ e33

�
V
h

�
o2u
oxoz

þ e15
o2w
ox2

þ e33

�
þ e233

c33

�
þ e33

�
V
h

�
o2w
oz2

� e11
o2u
ox2

� e33
o2u
oz2

¼ 0

ð13cÞ

Usually, the piezoelectric layer is in air. The dielectric constant (e0) of air is very small compared to that
of the piezoelectric medium. Thus, the air can be treated as vacuum, such that the electric potential u0 for
the air satisfies Laplace’s equation,

o2u0
ox2

þ o2u0
oz2

¼ 0 ð14Þ

When Lamb waves propagate in the plate, as shown in Fig. 1, both the components of mechanical
displacement and the electrical potential must satisfy Eqs. (13a)–(13c) and (14). Moreover, the re-
lated mechanical and electrical variables must satisfy the boundary conditions, which are described as
follows.

(I) The mechanical traction-free conditions at z ¼ �h=2

szx x;
�

� h
2

�
¼ 0

rz x;
�

� h
2

�
¼ 0

(II) The electrical boundary conditions for electrically open case at z ¼ �h=2

u0 x;
�

� h
2

�
¼ u x;

�
� h
2

�

Dz0 x;
�

� h
2

�
¼ Dz x;

�
� h
2

�

(III) The electrical boundary conditions for electrically shorted case at z ¼ �h=2

u x;
�

� h
2

�
¼ 0

3. Symmetric modes (OPS)

3.1. Solutions of the mechanical displacements and electrical potential

For the OPS mode, we assume the solutions of Eqs. (13a)–(13c) as (Romos and Otero, 1997)

u ¼ B1 cosðkbzÞ exp½ikðx� ctÞ	 ð15aÞ

w ¼ B2 sinðkbzÞ exp½ikðx� ctÞ	 ð15bÞ

u ¼ B3 sinðkbzÞ exp½ikðx� ctÞ	 ð15cÞ

where B1, B2 and B3 are constants determined by the excitation, k is wave number and k ¼ 2p=k, k is
wavelength, b is constant, i ¼

ffiffiffiffiffiffiffi
�1

p
.
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Substitution of Eqs. (15a)–(15c) into Eqs. (13a)–(13c), yields

� c11

�
� qc2 þ c44b2 þ

c13e33
c33

�
� e31

�
V
h

�
B1 þ ðc13 þ c44ÞbiB2 þ ðe31 þ e15ÞbiB3 ¼ 0 ð16aÞ

ðc13 þ c44ÞbiB1 þ c44

�
� qc2 þ c33b2 þ

c13e33
c33

�
� e31

�
V
h

�
B2 þ ðe15 þ e33b2ÞB3 ¼ 0 ð16bÞ

e15

�
þ e31 þ

e233
c33

�
þ e33

�
V
h

�
biB1 þ e15

�
þ e33

�
þ e233

c33

�
þ e33

�
V
h

�
b2
�
B2 � ðe11 þ e33b2ÞB3 ¼ 0 ð16cÞ

In order to get nontrivial solution, the determinant of the coefficient matrix of Eqs. (16a)–(16c) must be
equal to zero, i.e.

� c11 � qc2 þ c44b2 þ c13e33
c33

� e31
� 	

V
h

h i
ðc13 þ c44Þbi ðe31 þ e15Þbi

ðc13 þ c44Þbi c44 � qc2 þ c33b2 þ c13e33
c33

� e31
� 	

V
h ðe15 þ e33b2Þ

e15 þ e31 þ
e2
33

c33
þ e33

� 	
V
h

h i
bi e15 þ e33 þ

e2
33

c33
þ e33

� 	
V
h

h i
b2 �ðe11 þ e33b2Þ

����������

����������
¼ 0

ð17Þ
Eq. (17) is a third-order equation in b2 with phase velocity c as the unknown parameter. For every value

of c, biasing voltage V and material constants, there are three solutions b2n ðn ¼ 1–3Þ. The roots þbn and
�bn do not yield independent solutions on account of the form of Eqs. (15a)–(15c). So only three solutions
of bn ðn ¼ 1–3Þ are adopted. The cubic equation for (17) is:

A3ðb2Þ3 þ A2ðb2Þ2 þ A1ðb2Þ þ A0 ¼ 0
where

A3 ¼ c44 c33e33

�
þ e233 þ e33

e233
c33

�
þ e33

�
V
h

�

A2 ¼ �2e33ðc13 þ c44Þðe31 þ e15Þ �
e233
c33

�
þ e33

�
V
h
ðc13 þ c44Þðe33 þ e31 þ e15Þ

þ c44 e33 c44

��
� qc2 þ c13e33

c33

�
� e31

�
V
h

�
þ 2e15e33 þ e11c33 þ

e233
c33

�
þ e33

�
V
h
e15

�

þ c33ðe31 þ e15Þ e31
�

þ e15 þ
e233
c33

�
þ e33

�
V
h

�
� e33ðc13 þ c44Þ2 þ c33e33

�
þ e233 þ e33

e233
c33

�
þ e33

�
V
h

�

� c11

�
� qc2 þ c13e33

c33

�
� e31

�
V
h

�

A1 ¼ c11

�
� qc2 þ c13e33

c33

�
� e31

�
V
h

�
� e33 � c44

��
� qc2 þ c13e33

c33

�
� e31

�
V
h

�

þ e11c33 þ 2e15e33 � e15 �
e233
c33

�
þ e33

�
V
h

�
þ c44e215 þ c44e11

�
þ ðe15 þ e31Þ � ðe15

�
þ e31Þ

þ e233
c33

�
þ e33

�
V
h

��
� c44
�

� qc2 þ c13e33
c33

�
� e31

�
V
h

�
� e11ðc13 þ c44Þ2

� 2e15ðc13 þ c44Þðe15 þ e31Þ þ e15ðc13 þ c44Þ
e233
c33

�
þ e33

�
V
h

H. Liu et al. / International Journal of Solids and Structures 39 (2002) 2031–2049 2037



A0 ¼ c11

�
� qc2 þ c13e33

c33

�
� e31

�
V
h

�
� e215

�
þ e11 � c44

�
� qc2 þ c13e33

c33

�
� e31

�
V
h

��

when substituted in any two of Eq. (17), each independent bn ðn ¼ 1–3Þ yields the amplitude ratios B1n=B3n;
B2n=B3n ðn ¼ 1–3Þ, i.e.,

B1n
B3n

¼
�ðe31 þ e15Þ � c44 � qc2 þ c33b2n þ

c13e33
c33

� e31
� 	

V
h

h i
þ ðe15 þ e33b2nÞðc13 þ c44Þ

� c11 � qc2 þ c44b2n þ c13e33
c33

� e31
� 	

V
h

h i
� c44 � qc2 þ c33b2n þ c13e33

c33
� e31

� 	
V
h

h i
þ ðc13 þ c44Þ2b2n

� bn � i ¼ F1n ð18aÞ

B2n
B3n

¼
c11 � qc2 þ c44b2n � c13e33

c33
þ e31

� 	
V
h

h i
� ðe15 þ e33b2nÞ � ðc13 þ c44Þðe31 þ e15Þb2n

� c11 � qc2 þ c44b2n þ c13e33
c33

� e31
� 	

V
h

h i
� c44 � qc2 þ c33b2n þ c13e33

c33
� e31

� 	
V
h

h i
þ ðc13 þ c44Þ2b2n

¼ F2n

ð18bÞ
Substitution of Eqs. (18a) and (18b) into Eqs. (15a)–(15c), the displacement and electrical potential for OPS
are rewritten as

u ¼
X3
n¼1

F1nB3n cosðkbnzÞ exp½ikðx� ctÞ	 ð19aÞ

w ¼
X3
n¼1

F2nB3n sinðkbnzÞ exp½ikðx� ctÞ	 ð19bÞ

u ¼
X3
n¼1

B3n sinðkbnzÞ exp½ikðx� ctÞ	 ð19cÞ

In addition, the solutions of electrical potential in the vacuum can be obtained from Eq. (14), i.e.,

u0 ¼ B4e�kz � exp½ikðx� ctÞ	 ðzP h=2Þ ð20Þ

3.2. Solutions of the phase velocity

3.2.1. Electrically open case
Substituting Eqs. (19a)–(19c) and (20) and their corresponding components of stress and electrical

displacement into the boundary conditions (I) and (II), we can obtain the algebraic equations in the un-
known constants B31, B32, B33, and B4. After simplifying, we can obtain the algebraic equations in the
unknown constants B31, B32, and B33, i.e.,

½P 	½B	 ¼ 0 ð21Þ
where ½P 	 is a 3� 3 matrix, Psn ðs ¼ 1–3; n ¼ 1–3Þ are given by

P1n ¼ ½c44ðF2n � i� bnF1nÞ þ e15 � i	 � sin kbn
h
2

� �

P2n ¼ ðc13F1n � iþ c33bnF2n þ e33bnÞ � cos kbn
h
2

� �
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P3n ¼
1

e0
ðe31F1n � iþ e33bnF2n � e33bnÞ cos kbn

h
2

� �
� sin kbn

h
2

� �

Let

d1 ¼ c44ðF21 � i� b1F11Þ þ e15 � i; d2 ¼ c44ðF22 � i� b2F12Þ þ e15 � i

d3 ¼ c44ðF23 � i� b3F13Þ þ e15 � i; f1 ¼ c13F11 � iþ c33b1F21 þ e33b1

f2 ¼ c13F12 � iþ c33b2F22 þ e33b2; f3 ¼ c13F13 � iþ c33b3F23 þ e33b3

g1 ¼
1

e0
ðe31F11 � iþ e33b1F21 � e33b1Þ; g2 ¼

1

e0
ðe31F12 � iþ e33b2F22 � e33b2Þ

g3 ¼
1

e0
ðe31F13 � iþ e33b3F23 � e33b3Þ

To obtain a nontrivial solution, the determinant of the coefficient matrix must be equal to zero, i.e.,

tgðpmb1Þ � ½e1tgðpmb2Þ � h2	 þ tgðpmb2Þ � ½e3tgðpmb3Þ � h2	 þ tgðpmb3Þ � ½e2tgðpmb1Þ � h3	 ¼ 0 ð22Þ
where

m ¼ h=k; e1 ¼ f3ðd2 � d1Þ; e2 ¼ f2ðd1 � d3Þ; e3 ¼ f1ðd3 � d2Þ; h1 ¼ d1ðf2g3 � f3g2Þ;
h2 ¼ d2ðf3g1 � f1g3Þ; h3 ¼ d3ðf1g2 � f2g1Þ

m is a ratio of plate thickness to wavelength. Generally, Lamb waves are excited by an interdigital
transducer (IDT) deposited on the piezoelectric plate. The wavelength k equals to the spatial periodicity of
the IDTs. Also, the thickness of the plate can be accurately measured. Thus the value of m can be defined. It
is a very important variable in SAW devices, the wave modes that a plate supports depend on the value of
the ratio h=k.
In addition, for the electrically open case, the biasing voltage V in Eqs. (16a)–(16c) and (17) should be

equal to zero.

3.2.2. Electrically shorted case
Substituting Eqs. (20) and (19a)–(19c) and relevant components of stress and electrical displacement into

boundary conditions (I) and (III), we obtain the algebraic equations in the unknown constants B31, B32 and
B33, i.e.,

½P 	½B	 ¼ 0 ð23Þ

where ½P 	 is a 3� 3 matrix, Psn ðs ¼ 1–3; n ¼ 1–3Þ are given by

P1n ¼ ½c44ðF2n � i� bnF1nÞ þ e15 � i	 � sin kbn
h
2

� �

P2n ¼ ðc13F1n � iþ c33bnF2n þ e33bnÞ � cos kbn
h
2

� �

P3n ¼ sin kbn
h
2

� �

Then we can get a similar solution of phase velocity for the electrically shorted case

e1tgðpmb1Þ tgðpmb2Þ þ e2tgðpmb1Þ tgðpmb3Þ þ e3tgðpmb2Þ tgðpmb3Þ ¼ 0 ð24Þ
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Due to the complexity of problem, numerical search routine is necessary to find the root of phase ve-
locity that lets jP j vanish.

3.3. Solutions of the stress field

After the root of the phase velocity is found, for both electrically open and shorted cases, from the first
two equations of boundary equations, we have

B31 ¼ b1B33; B32 ¼ b2B33; B33 ¼ b3B33 ð25Þ

where

b1 ¼
� sinðpmb3Þd3 � cosðpmb2Þf2 þ sinðpmb2Þd2 cosðpmb3Þf3
sinðpmb1Þd1 � cosðpmb2Þf2 � sinðpmb2Þd2 cosðpmb1Þf1

b2 ¼
� sinðpmb1Þd1 � cosðpmb3Þf3 þ sinðpmb3Þd3 � cosðpmb1Þf1
sinðpmb1Þd1 � cosðpmb2Þf2 � sinðpmb2Þd2 � cosðpmb1Þf1

b3 ¼ 1

The value of B33 is determined by the excitation. Substitution of Eq. (25) into Eqs. (19a)–(19c), yields

u ¼
X3
n¼1

F1nbn cosðkbnzÞ
" #

� B33 � exp½ikðx� ctÞ	 ð26aÞ

w ¼
X3
n¼1

F2nbn sinðkbnzÞ
" #

� B33 � exp½ikðx� ctÞ	 ð26bÞ

u ¼
X3
n¼1

bn sinðkbnzÞ
" #

� B33 � exp½ikðx� ctÞ	 ð26cÞ

Substituting Eqs. (26a)–(26c) into Eqs. (12a)–(12f), solutions of the stress fields are expressed as

szx ¼
X3
n¼1

½c44ðF2n � i
(

� bnF1nÞ þ e15 � i	 � k � bn � sinðkbnzÞ
)

� B33 � exp½ikðx� ctÞ	 ð27aÞ

rz ¼
X3
n¼1

ðc13F1n � i
"

þ c33bnF2n þ e33bnÞ � k � bn � cosðkbnzÞ
#
� B33 � exp½ikðx� ctÞ	 ð27bÞ

rx ¼
X3
n¼1

ðc11F1n � i
"

þ c13bnF2n þ e31bnÞ � k � bn � cosðkbnzÞ
#
� B33 � exp½ikðx� ctÞ	 ð27cÞ

ry ¼
X3
n¼1

ðc12F1n � i
"

þ c13bnF2n þ e31bnÞ � k � bn � cosðkbnzÞ
#
� B33 � exp½ikðx� ctÞ	 ð27dÞ
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4. Discussions

To graphically show the effect of a biasing electric field on the phase velocity, electromechanical coupling
coefficient, displacements and stress fields of the first several symmetric Lamb wave modes, calculations are
performed for several materials. The results show essentially similar behavior, so only the calculated results
of PZT-5H ceramics are given. The material constants of PZT-5H ceramics are taken from Ristic (1983), as
shown in Table 1. The dielectric constant of vacuum is e0 ¼ 8:85� 10�12 F/m. The plate thickness is 0.5
mm.
For displaying the amplitudes of mechanical displacements and stress components as a function of z, it is

necessary for us to take the real part of their expressions (Mesquida et al., 1998). Let v denote all these
variables, then

vðx; z; tÞ ¼ vðzÞ exp½ikðx� ctÞ	
This leads to

Re½vðx; z; tÞ	 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fRe½vðzÞ	g2 þ fIm½vðzÞ	g2

q
� cos½kðx� ctÞ þ a	

where

a ¼ arctg Im½�vvðzÞ	
Re½�vvðzÞ	

 !

Generally, we plot Im½�vvðzÞ	 and Re½�vvðzÞ	 to show the z dependence of the amplitude of v.

4.1. Effect of the biasing electric field on the phase velocity and electromechanical coupling coefficient

The phase velocity c of the first several symmetric modes can be calculated from equations in Section 3
for electrically open and shorted cases, respectively, with different values of m and biasing electric field.
Here m is the ratio of plate thickness to wavelength, a very important parameter for SAW, changes from
0.01 to 3. The breakdown fields of ceramics are of the order of 4–60 kV/mm (Xu, 1993). Here we assume the
plate is under a biasing electric field of 2.5 kV/mm without breakdown. Effects of the biasing electric field on
the fractional change in phase velocity Dc=c are shown in Fig. 2. Fig. 2(a)–(c) are shown for the s0 mode, s1
mode and s2 mode of Lamb wave in turn. In Fig. 2, the horizontal axis is the biasing electric field, the
vertical axis is the fractional change in phase velocity. It is shown that the biasing electric field has sig-
nificant effects on the phase velocity of symmetric Lamb waves. The phase velocity increases when the
biasing electric field changes from �2.5 to 2.5 kV/mm. The maximum fractional velocity change Dc=c that
we obtained is 0.1% corresponding to a biasing electric field of 2.5 kV/mm at m ¼ 3:00 for the s0 mode. The

Table 1

Material constants

Material Elastic constant (1010 N/m2) Mass density

q (kg/m3)
Piezoelectric constant

(C/m2)

Dielectric con-

stant (10�10 F/m)

c11 c12 c13 c33 c44 e15 e31 e33 e11 e33

PZT-5H ceramics 12.1 7.95 8.41 11.7 2.30 7.5 17.0 �6.5 23.3 150 130

PZT-2 ceramics 13.5 6.79 6.81 11.3 2.22 7.6 9.8 �1.9 9.0 44.6 23.0

Lead-oxide glass 6.13 2.18 3.879 0.36 0.36

SiO2 glass 7.85 3.12 2.2 0.33 0.33

Borosilicate glass 7.42 2.78 2.23 0.45 0.45

ZnO 20.96 12.11 10.51 21.09 4.25 5.68 �0.48 �0.573 1.32 0.75 0.90
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fractional velocity changes enhance with the increase of the ratio of the plate thickness to wavelength. This
result is very useful for designing acoustic devices, for example, the delay time of delay lines is related to the
phase velocity, which can be altered by applying proper biasing electric fields according to Fig. 2. Thus, in
order to obtain a large variation of time delay, one can apply a biasing electric field.
The dispersion relations for the s0, s1 and s2 modes for electrically open case are plotted in Fig. 3. It is

seen that as k ! 1, the velocity of the s0 mode tends to the free-surface Rayleigh velocity. The velocity of
the higher modes is asymptotic to the bulk shear velocity.
From Figs. 2 and 3, we can calculate the electromechanical coupling coefficient K2 for the determination

of the most efficient structure. As we known, the original definition of K2 is related with energy, and ex-
pressed as (Laurent et al., 2000)

Fig. 2. Variations of the fractional phase velocity change vs. the biasing electric field for Lamb waves in a PZT-5H ceramic plate, (a) s0
mode, (b) s1 mode and (c) s2 mode.
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K2 ¼ U 2m=ðUcUdÞ

where Um is the mutual electric and mechanical energy, Uc is the dielectric energy and Ud the mechanical
energy. For general SAW devices, the electromechanical coupling coefficient K2, which is a very important
parameter of piezoelectric devices, is defined as

K2 ¼ 2 cf � c0
cf

where cf and c0 are the phase velocities for electrically open and shorted cases, respectively. However,
Lamb waves are not surface acoustic waves. Only for larger ratios of plate thickness to wavelength, and
when the velocities of in-phase a0 and s0 modes tend to the Rayleigh wave velocity, the sum of a0 and s0
Lamb modes with equal amplitudes can be thought as Rayleigh modes on the surface mode, the difference
of a0 and s0 Lamb modes can be thought as Rayleigh modes on the bottom surface of the plate. So the
above equation can not be applied to calculate the electromechanical coupling coefficient, we can define
it as a factor to reflect the change of velocity after metalizing and therefore we obtain a rough result.
From Fig. 4, it is seen that for m ¼ 3:0, K2 can be increased by the negative biasing electric field. It can be

Fig. 3. For the electrically open case, the dispersion relations for the s0, s1 and s2 modes of PZT-5H ceramics.

Fig. 4. The electromechanical coupling factor at m ¼ 3:0, (a) K2 and (b) ðDK2Þ=ðK2Þ.
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observed from Fig. 4(a) that the electromechanical coupling coefficient for the s0 mode attains highest
values. The maximum is 0.04579 under a biasing electric field of �2.5 kV/mm. Fig. 4(b) illustrates the

Fig. 5. At m ¼ 3:0, variations of particle displacement along thickness of the PZT-5H plate, (a) �uu of s0 mode, (b) w of s0 mode, (c) �uu of
s1 mode, (d) w of s1 mode, (e) �uu of s2 mode and (f) w of s2 mode.
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fractional change in electromechanical coupling coefficient. It appears that K2 is maximally increased by
8.728% for the s2 mode.

4.2. Effect of the biasing electric field on displacements

Variations of the particle displacements of symmetric Lamb modes along the thickness of a PZT-5H
plate are plotted in Fig. 5. The horizontal axis is the depth into the material, 2z=h ¼ �1 corresponds to the
top surface of the plate and 2z=h ¼ 1 bottom surface of the plate. From Fig. 5, it is seen that for m ¼ 3:0 (a
relative large ratio of plate thickness to wavelength), the biasing electric field has no effect on the dis-
placement components for the s0 and s2 modes, and has effects on the s1 mode. For the s1 mode, the
displacement amplitudes juj and jwj under unbiased states are always larger than that of the biased states
along the plate thickness. For the s0 mode, a larger fraction of the energy is transported near the two free
surfaces. For the higher modes, the curves of displacement component amplitudes are more or less sinu-
soidal.

Fig. 6. At m ¼ 3:0, variations of stress fields of the s0 mode along thickness of the PZT-5H plate, (a) rx, (b) ry , (c) rz and (d) �sszx.
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4.3. Effect of the biasing electric field on stress fields

For the small-amplitude wave problem superposed on initial stresses, the equations describing the small
motion are nonlinear elastic. The Lagrangian stress tensors referred to the reference configuration can be
expressed as

rij ¼ r0ij þ r0jru
0
i;r þ cijklu0k;l þ eijnu0

;n

where rij is the total stress tensor, r0ij is initial stress tensor, u
0
k and u0 are the component of displacement

and electrical potential from the initial equilibrium state to the final state respectively. In this paper, only r0x
is considered, so ry , rz and szx have no relation to the initial stress, and only produced by u0k and u0.
However, for rx, we have

rx ¼ r0x þ r0xu
0
1;1 þ cijklu0k;l þ eijnu0

These total stress components of symmetric Lamb wave modes in a biasing electrical field are plotted for
m ¼ 3:0 in Figs. 6–8. Here, it is seen that rx, ry and rz are symmetric, and szx is antisymmetric with respect

Fig. 7. At m ¼ 3:0, variations of stress fields of the s1 mode along thickness of the PZT-5H plate, (a) rx, (b) ry , (c) rz and (d) �sszx.
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to the center plane for symmetric modes. The biasing electric field has no effect on the stress distributions
(except rx) for the s0 and s2 modes. From Fig. 7, for the s1 mode, it is seen that the stress component ry is
concentrated near the bottom and top surfaces. For the same value of z, the stress amplitude jry j of the
unbiased state is larger than that of the biased states. Conversely, other curves of stress component am-
plitudes are more or less sinusoidal as a function of the plate thickness.

5. Conclusions

The phase velocity, electromechanical coupling coefficient, displacements and stress fields of symmetric
Lamb wave modes can be affected by the biasing electric field. The biasing electric field has a significant
effect on the phase velocities of Lamb wave modes. For the coordinate system in Fig. 1, the phase velocity

Fig. 8. At m ¼ 3:0, variations of stress fields of the s2 mode along thickness of the PZT-5H plate, (a) rx, (b) ry , (c) rz and (d) �sszx.

H. Liu et al. / International Journal of Solids and Structures 39 (2002) 2031–2049 2047



decreases while applying negative biasing voltage and increases while applying positive biasing voltage. For
a relative large ratio of plate thickness to wavelength, the maximum fractional velocity change of PZT-5H
plates is greater than 0.1% corresponding to a biasing electric field of 2.5 kV/mm. Most experimental works
are carried on LiNbO3 crystals. For LiNbO3 crystals (Joshi, 1982; Palma et al., 1985a,b), an electric field of
14 kV/mm can produce fractional time delay changes greater than 0.125%. This indicates that the biasing
electric field has a much stronger effect here than in the case of LiNbO3 crystals. The fairly large variation of
time delay obtained by the biasing electric field is useful for measurement of high voltages. The determi-
nation of high voltages is required in many practical fields such as electrical power systems. The application
of these common techniques including electrostatic voltmer, electro-optic voltmer, and acoustic voltmer
depends on cost, sensitivity, resolution and so on (Fransen et al., 1997). Lamb wave voltage sensors are
sensitive to the biasing electric field. Thus one can accurately measure the changes in time delay to de-
termine the applied voltages. The maximum voltage one can measured is related with the breakdown fields
of the material and thickness of the plate. Furthermore, a negative biasing electric field can improve the
electromechanical coupling coefficient, one of the most important parameter for the design of piezoelectric
devices. But the detailed magnitude can not be calculated according to the change of velocity after me-
talizing. The biasing electric field has no effect on the displacements for the zero-order mode. However, for
large ratios of plate thickness to wavelength, the displacements and stresses of certain higher modes can be
affected by a biasing electric field. As a general comment one can state that the use of Lamb modes can lead
to a wider choice of improving the characteristics of acoustic devices. Experimental works are still needed to
investigate different piezoelectric materials and structures for an enhanced performance.
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